Advertisement

In Vitro Model for the Evaluation of Inferior Vena Cava Filters: Effect of Experimental Parameters on Thrombus-Capturing Efficacy of the Vena Tech-LGM Filter

      This paper is only available as a PDF. To read, Please Download here.

      Purpose

      To determine the experimental parameters in an in vitro model that influence the thrombus-capturing efficacy of the Vena Tech-LGM filter.

      Materials and Methods

      The Vena Tech-LGM filter was evaluated in an in vitro model of the vena cava with a computer-controlled flow system with a total of 5,200 thrombi. The influences of the following experimental parameters on the capture rate were analyzed with a multiple logistic regression model: type of testing (single, double, and multiple shot testing), thrombus diameter and length, IVC diameter and orientation, flow quality and quantity, flow velocity, and the length of the prepositioned thrombus.

      Results

      A significant influence on the capture rate could be demonstrated for the type of testing, the thrombus diameter and length, the IVC diameter, and with double shot testing for the length of the prepositioned thrombus and the IVC orientation. The flow quality and the peak velocity were not significant. Based on these results, a protocol for in vitro testing of IVC filters was designed.

      Conclusions

      Experimental parameters influence the thrombus-capturing efficacy of the Vena Tech-LGM filter and should be taken into account when in vitro testing is performed.

      Index terms

      Abbreviation:

      IVC (inferior vena cava)
      To read this article in full you will need to make a payment
      SIR Member Login
      Society Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dorfman G.S.
        Percutaneous inferior vena caval filters.
        Radiology. 1990; 174: 987-992
        • Grassi C.J.
        Inferior vena caval filters: analysis of five currently avail able devices.
        AJR. 1991; 156: 813-821
        • Neuerburg J.
        • Günther R.W.
        Developments in inferiorvena cava filters: a European viewpoint.
        Semin Intervent Radiol. 1994; 11: 349-357
        • Yune H.Y.
        Inferior vena cava filter: search for an ideal device.
        Radiology. 1989; 172: 15-16
        • Ferris E.J.
        • McCowan T.C.
        • Carver D.K.
        • McFarland D.R.
        Percutaneous inferior vena caval filters: follow-up of seven designs in 320 patients.
        Radiology. 1993; 188: 851-856
        • Athanasoulis C.A.
        Complications of vena cava filters.
        Radiology. 1993; 188: 614-615
        • Becker D.M.
        • Philbrick J.T.
        • Selby J.B.
        Inferior vena cava filters: indications, safety, and effectiveness.
        Arch Intern Med. 1992; 152: 1985-1994
        • Burke P.E.
        • Michna B.A.
        • Harvey C.F.
        • Crute S.L.
        • Sobel M.
        • Greenfield L.J.
        Experimental comparison of percutaneous vena caval devices: titanium Greenfield filter versus Bird's Nest filter.
        J Vasc Surg. 1987; 6: 66-70
        • Millward S.F.
        • Marsh J.I.
        • Pon C.
        • Moher D.
        Thrombus-trapping efficiency of the LGM (Vena Tech) and titanium Greenfield filters in vivo.
        JVIR. 1992; 3: 103-106
        • Simon M.
        • Kaplow R.
        • Salzman E.
        • Freiman D.
        A vena cava filter using thermal shape memory alloy.
        Radiology. 1977; 125: 89-94
        • Palestrant A.M.
        • Prince M.
        • Simon M.
        Comparative in vitro evaluation of the nitinol inferior vena cava filter.
        Radiology. 1982; 145: 351-355
        • Lund G.
        • Rysay J.A.
        • Salomonowitz E.
        • et al.
        A new vena caval filter for percutaneous placement and retrieval: experimental study.
        Radiology. 1984; 152: 369-372
        • Maass D.
        • Demierre D.
        • Wallsten H.
        • Senning A.
        The helix filter: a new vena caval filter for the prevention of pulmonary embolism.
        J Cardiovasc Surg (Torino). 1985; 26: 116-123
        • Günther R.W.
        • Schild H.
        • Fries A.
        • Störkel S.
        Vena caval filter to pre vent pulmonary embolism: experimental study.
        Radiology. 1985; 156: 315-320
        • Robinson J.D.
        • Madison M.T.
        • Hunter D.W.
        • Castaneda-Zuniga R.
        • Amplatz K.
        In vitro evaluation of caval filters.
        Cardiovasc Intervent Radiol. 1988; 11: 346-351
        • Katsamouris A.A.
        • Waltman A.C.
        • Delichatsios M.A.
        • Athanasoulis C.A.
        Inferior vena cava filters: in vitro comparison of clot trapping and flow dynamics.
        Radiology. 1988; 166: 361-366
        • Teitelbaum G.P.
        • McGurrin M.
        • Davies B.L.
        • et al.
        Insertion and recovery of a new retrievable vena caval filter: work in progress.
        Invest Radiol. 1988; 23: 527-533
        • Palestrant A.M.
        • Faykus Jr, M.H.
        Clover leaf inferior vena cava filter: in vitro evaluation of filter deployment and comparison of emboli-capturing ability.
        JVIR. 1991; 2: 117-121
        • Hosaka J.
        • Kvernebo K.
        • Laerum F.
        In vitro assessment of the DIL and Greenfield vena cava filter system.
        Frontiers Eur Radiol. 1993; 9: 177-186
        • Kraimps J.
        • DeLaFaye D.
        • Drouineau J.
        • Bensignor E.
        • Barbier J.
        Optimal central trapping (OPECTRA) vena caval filter: results of experimental studies.
        JVIR. 1992; 3: 697-701
        • Korbin C.D.
        • Reed R.A.
        • Taylor F.C.
        • Pentecost M.J.
        • Teitelbaum G.P.
        Comparison of filters in an oversized vena caval phantom: intracaval placement of a Bird's Nest filter versus biiliac placement of Greenfield, Vena Tech-LGM, and Simon nitinol filters.
        JVIR. 1992; 3: 559-564
        • Greenfield L.J.
        • Proctor M.C.
        Experimental embolic capture by asymmetric Greenfield filters.
        J Vasc Surg. 1992; 16: 436-444
        • Shlansky-Goldberg R.
        • Wing C.M.
        • LeVeen R.F.
        • Cope C.
        Effectiveness of prolapsed Bird's Nest filter.
        JVIR. 1993; 4: 505-511
        • Simon M.
        • Rabkin D.J.
        • Kleshinski S.
        • Kim D.
        • Ransil B.J.
        Comparative evaluation of clinically available inferior vena cava filters with an in vitro physiologic simulation of the vena cava.
        Radiology. 1993; 189: 769-774
        • Neuerburg J.
        • Günther R.W.
        • Rassmussen E.
        • et al.
        New retrievable percutaneous vena cava filter: experimental in vitro and in vivo evaluation.
        Cardiovasc Intervent Radiol. 1993; 16: 224-229
        • Korbin C.D.
        • Reed R.A.
        • Taylor F.C.
        • Kokoris S.P.
        • Teiltelbaum G.P.
        In vitro flow phantom analysis and clot-capturing ability of incompletely opened Vena Tech-LGM vena cava filters.
        Cardiovasc Intervent Radiol. 1993; 16: 3-6
        • Jausseran J.M.
        • Rubondy P.
        • Caburol G.
        • Ferdani M.
        • Lalanne B.
        Banc d’essai in vitro des filters ombrelles caves.
        Phlebologie. 1993; 46: 429-440
        • Hammer F.D.
        • Rousseau H.P.
        • Joffre F.G.
        • Sentenac B.P.
        • Tran-Van T.
        • Barthelemy R.P.
        In vitro evaluation of vena cava filters.
        JVIR. 1994; 5: 869-876
        • Rudondy P.
        • Ferdani M.
        • Reggi M.
        • Jausseran J.M.
        Interruption of the inferior vena cava using the Vascor filter: preliminary series of 51 cases.
        Cardiovascular Surgery. 1994; 2: 344-349
        • Qian Z.
        • Yasul J.
        • Nazarian G.K.
        • et al.
        In vitro and in vivo experimental evaluation of a new vena caval filter.
        JVIR. 1994; 5: 513-518
        • Dibie A.
        • Kareco T.
        • Musset D.
        • et al.
        In vitro evaluation of Dibie-Musset vena caval filter.
        Arch Mal Coeur Vaiss. 1994; 87: 115-122
        • Korbin C.D.
        • Van-Allan R.J.
        • Andrews R.T.
        • Katz M.D.
        • Teitelbaum G.P.
        Strut interlocking of titanium Greenfield vena cava filters: an in vitro study.
        Cardiovasc Intervent Radiol. 1994; 17: 204-206
        • Xian Z.Y.
        • Roy S.
        • Hosaka J.
        • Kvernebo K.
        • Laerum F.
        Multiple emboli and filter function: an in vitro comparison of three vena cava filters.
        JVIR. 1995; 6: 887-893
        • Stoneham G.W.
        • Burbridge B.E.
        • Millward S.F.
        Temporary inferior vena cava filters: in vitro comparison with permanent IVC filters.
        JVIR. 1995; 6: 731-736
        • Irie T.
        • Yamauchi T.
        • Makita K.
        • Kusano S.
        Retrievable IVC filter: preliminary in vitro and in vivo evaluation.
        JVIR. 1995; 6: 449-454
        • Xian Z.Y.
        • Roy S.
        • Hosaka J.
        • et al.
        In vitro evaluation of a new temporary venous filter: the spring filter.
        Cardiovasc Intervent Radiol. 1995; 18: 315-320
        • Vesely T.M.
        • Krysl J.
        • Smith S.R.
        • Killion D.
        • Hicks M.E.
        Preliminary investigation of the Irie inferior vena caval filter.
        JVIR. 1996; 7: 529-535
        • Neuerburg J.
        • Haupt-Pichler A.
        • Katterbach F.J.
        • et al.
        Bestimmung der Effektivität perkutaner Kavafilter: Experimentelle Untersuchungen.
        Röfo. 1996; 164: 331-337
        • Jaeger H.J.
        • Mair T.
        • Geller M.
        • Kinne R.K.
        • Christmann A.
        • Mathias K.D.
        A physiological in-vitro model of the inferior vena cava with a computer- controlled flow system for testing of IVC filters.
        Invest Radiol. 1997; 32: 511-522
        • Trusheim H.
        • Hüller C.
        • Eckert P.
        • Leliveldt W.
        Hämodynamische Parameter an definierten Stenosen der infrarenalen Cava.
        Die venöse Hämodynamik. Ergebnisse der Angiologie. 20. FK Schattauer Verlag, Stuttgart1978 (351–355)
        • Bonnichon P.
        • Gaudard F.
        • Ouakil E.
        • et al.
        Biometry of infrarenal inferiorvena cava measured by cavography: clinical applications.
        Surg Radiol Anat. 1989; 11: 149-154
        • Schmidt R.F.
        • Thews G.
        Physiologie des Menschen.
        Springer Verlag, Berlin1980 (434–499)
        • Nossal R.
        Network formation in polyacrylamidegels.
        Macromolecules. 1985; 18: 49-54
        • McCullagh P.
        • Nelder J.A.
        Generalized linear models.
        Chapman & Hall, London1989
      1. SAS Institute Inc. SAS/STAT Software: Changes and enhancements through release 6.11. Cary, NC: 1996.

        • Kraimps J.L.
        • De La Faye D.
        • Deville C.S.
        Conical endocaval filters with metallic struts: search for a new model.
        Ann Vasc Surg. 1992; 6: 99-110
        • Wexler L.W.
        • Bergel D.H.
        • Gabe I.T.
        • Makin G.S.
        • Mills C.J.
        Velocity of blood flow in normal human venae cavae.
        Circ Res. 1968; 23: 349-359