A new type of radiopaque doxorubicin-loaded microsphere created on the Embozene microspheres platform: in vitro characterization and comparison with controls

C. Sommer1, T. Do1, F. Pan1, E. Ryschich1, D. Vollherbst2, M. Jugold3, H. Kauczor3, P. Pereira5, G. Richter6; 1University Hospital Heidelberg, Heidelberg, Baden-Württemberg; 2N/A, Heidelberg, Germany; 3dkfz (German Cancer Research Center), Heidelberg, Baden-Württemberg; 4University Hospital Heidelberg, 69120, Baden-Württemberg; 5Academic Hospital of Ruprecht-carls-University Hei, Heilbronn, Germany; 6Stuttgart Clinics, Stuttgart, Baden-Württemberg

Purpose: To compare material characteristics between a new type of radiopaque doxorubicin-loaded microsphere and controls.

Materials: A new type of radiopaque doxorubicin-loaded microsphere (V-100), created on the Embozene Microspheres platform, and controls (DC-Bead-LUMI-70-150 [radiopaque], Embozene TANDEM-100-Microspheres [non-radiopaque] and DC-Bead-M1 [non-radiopaque]) were analyzed. Qualitative, semi-quantitative and/or quantitative CT, light/phase-contrast transillumination/fluorescence microscopy, laser diffraction/light scattering, and/or rheometry were used to describe material characteristics for microspheres in suspension (aqua pure or aqua/iodixanol 320) before and/or after doxorubicin loading (37.5 mg doxorubicin/1 mL sedimented microspheres). Study goals were radiopacitity, doxorubicin loading efficacy, morphology, size distribution, time-in-suspension, rheological properties and stability.

Results: DC-Bead-LUMI-70-150 featured a density of 2432.7 ± 3.2HU and adverse imaging artifacts (blooming and splay artifacts) comparable with iodixanol 320 25%. V-100, Embozene TANDEM-100-Microspheres and DC-Bead-M1 featured densities of 480.4 ± 2.9HU, 118.1 ± 3.0HU and 19.8 ± 1.5HU, respectively, and no adverse imaging artifacts. Fastest relative doxorubicin loading featured DC-Bead-M1, followed by Embozene TANDEM-100-Microspheres, DC-Bead-LUMI-70-150, and V-100, with relative doxorubicin loading of >99% for DC-Bead-LUMI-70-150, Embozene-TANDEM-100-Microspheres and DC-Bead-M1 as well as >98.6% for V-100 after 24hr. For doxorubicin-loaded microspheres in suspension with aqua pure, there were intact and spherically-shaped microspheres with narrow size calibration for DC-Bead-LUMI-70-150, V-100 and Embozene-TANDEM-100-Microspheres and with non-narrow size calibration for DC-Bead-M1. The type of suspension had a marked impact on morphology (not for DC-Bead-M1), size distribution (only for DC-Bead-M1), time-in-suspension, rheological properties (not for DC-Bead-M1), and stability after doxorubicin loading.

Conclusions: The new type of radiopaque doxorubicin-loaded microsphere, created on the Embozene Microspheres platform, is extremely promising and should undergo further scientific evaluation.

Abstract No. 706

Descriptive revenue analysis of 100 patients in an interventional oncology service line: understanding revenue sources in interventional radiology

D. Ruohoniemi1, B. Taslakian1, A. Chong1, E. Aaltonen1, C. Horn1, A. Sista1, R. Hickey1; 1New York University School of Medicine, New York, NY

Purpose: As interventional radiology (IR) transitions to a clinical revenue source, understanding revenue sources in interventional oncology is extremely promising and should undergo further scientific evaluation.

Table: Rheological Properties

<table>
<thead>
<tr>
<th>Material</th>
<th>V-100 in Suspension with Aqua Pure</th>
<th>Embozene-Tandem 100-Microspheres in Suspension with Aqua Pure</th>
<th>DC-Bead M1 in Suspension with Aqua Pure</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-Bead-LUMI (70-150) in Suspension with Aqua Pure</td>
<td>1.81 <sup>1</sup> 204850 Pa2 160478 Pa3</td>
<td>1.81 92196 Pa2 63480 Pa3</td>
<td>4.51 59692 Pa2 50049 Pa3</td>
</tr>
<tr>
<td>DC-Bead-LUMI 70-150) in Suspension with Aqua/Iodixanol 3204</td>
<td>11.11 271890 Pa2 235456 Pa3</td>
<td>2.81 122410 Pa2 95179 Pa3</td>
<td>4.51 57111 Pa2 50900 Pa3</td>
</tr>
</tbody>
</table>

1Critical deformation strain of the microspheres (indicating deformability)

2Peak dynamic modulus G’ (indicating elasticity) of the microspheres within the viscoelastic region (or until the critical deformation of the microspheres was reached).

3Mean dynamic modulus G’ (indicating elasticity) of the microspheres within the viscoelastic region (or until the critical deformation of the microspheres was reached).

4Iodixanol 320 50%; type of suspension: aqua pure versus aqua/iodixanol 320 with a marked impact on deformability and elasticity for DC-Bead-LUMI-70-150, V-100, and Embozene-Tandem 100-Microspheres.